
Week 6 - Friday

 What did we talk about last time?
 Calculator example
 Audio

 In addition to widgets scattered across the surface of a
JFrame, users are accustomed to menus

 Menus, of course, drop down to display a list of options
 The good news is that we can add action listeners to these

menu items just like we can with JButton objects
 All we have to do is learn how to create menus

 In Swing, the menu itself (not the choices in the menu) is a JMenu
 You can create a JMenu with the name of your choice much like any

other Swing widget with text

 Like other widgets, creating the menu doesn't display it
 We'll have to add it to the appropriate container
 Common menus are:
 File
 Edit
 View
 Help

JMenu fileMenu = new JMenu("File");

 The choices that you add to a JMenu are objects of type JMenuItem
 They function much like a JButton in that you can add an action listener

to them

 Once you create a JMenuItem, you can add it to a JMenu

 You can even add a JMenu to another JMenu for nested menus

JMenuItem exitItem = new JMenuItem("Exit");
exitItem.addActionListener(e ->
frame.dispose());

fileMenu.add(exitItem);

 Where do the JMenu objects live?
 A JMenuBar, of course
 First, you create a JMenuBar
 Then, you add your JMenu objects to it (in order)
 Then, you set it as the frame's menu bar

 Make sure you don't add the menu bar to the frame by mistake

JMenuBar menuBar = new JMenuBar();
menuBar.add(fileMenu); // add one or more menus
frame.setJMenuBar(menuBar);

 We're just scratching the surface
 It's possible to add accelerators (keyboard shortcuts) to menu

items
 There's an addSeparator() method on the JMenu object

that can create separators between groups of menu items
 Menu items can have icons
 You can even put check boxes and radio buttons in menus
 If you're interested, read a tutorial or the API

To understand recursion, you must first understand recursion.

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

 It is possible to define something recursively from the bottom
up

 We start with a simple pattern and repeat the pattern, using a
copy of the pattern for each part of the starting pattern

Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720

 PHP
 PHP: Hypertext Processor
▪ (PHP: Hypertext Processor): Hypertext Processor
▪ …

 XINU
 XINU Is Not Unix
▪ (XINU Is Not Unix) Is Not Unix
▪ …

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

ProblemProblemProblemProblem

 Problem: You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren't there yet):
 Take a step toward the door

Problem

 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)!

public static long factorial(int n)
{
if(n <= 1)

return 1;
else

return n*factorial(n – 1);
}

Base Case

Recursive
Case

 When we do recursion, we want to pass all the data in through
our method arguments

 We want to get all of our results back through return
statements

 Think of each recursive method call as a frozen moment in
time

 Thus, we usually don't want to assign variables
 Instead, variables change as they pass to the next method call

 How does it actually work inside a computer?
 Is there a problem with calling a method inside the same

method?
 How does the computer keep track of which method is which?

 A stack is a first-in last-out (FILO) data structure used to store
and retrieve items in a particular order

 Just like a stack of blocks:

Push Push Pop

 In the same way, the local variables for each method are
stored on the stack

 When a method is called, a copy of that method is pushed
onto the stack

 When a method returns, that copy of the method pops off the
stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return

 Each copy of factorial has a value of n stored as a local
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1

 You can use recursion anytime you would use loops
 With one exception:
 If you make too many method calls, you will run out of stack space,

and your program will crash
 On these machines, it's probably between 10,000 and 30,000 method

calls
 Some languages like Lisp don't even have loops!
 Everything is done recursively
 Some problems are naturally modeled recursively

 Although it's not efficient to do so, we can think of
multiplication as repeated addition

 Thus, 𝑥𝑥 � 𝑦𝑦 = 𝑥𝑥 + 𝑥𝑥 + 𝑥𝑥… + 𝑥𝑥
(𝑦𝑦 times)

 Base case (y = 0):
 𝑥𝑥 � 0 = 0

 Recursive case (y > 0):
 𝑥𝑥 � 𝑦𝑦 = 𝑥𝑥 + 𝑥𝑥 � 𝑦𝑦 − 1

public static int multiply(int x, int y){

if(y == 0)
return 0;

else
return x + multiply(x, y - 1);

}

Base Case

Recursive
Case

 Similarly, exponentiation is repeated multiplication
 Thus, 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥… � 𝑥𝑥

(𝑦𝑦 times)
 Base case (y = 0):
 𝑥𝑥0 = 1

 Recursive case (y > 0):
 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥𝑦𝑦−1

 There is a more efficient way to do this, but you'll have to take
COMP 2100 to talk about it

public static double power(double x, int y){

if(y == 0)
return 1.0;

else
return x * power(x, y - 1);

}

Base Case

Recursive
Case

 More recursion

 Keep reading Chapter 19
 Keep working on Project 2
 InSocial Risk Advisors are looking for a consultant
 They need help linking together some services with Zapier
 Should be a small amount of work, but it might open up other

opportunities
 If interested, send a resume to Jim Waterwash
 Get his contact information from me

	COMP 2000
	Last time
	Questions?
	Project 2
	Menus
	Menus
	JMenu
	JMenuItem
	JMenuBar
	Extras
	Recursion
	What is recursion?
	Bottom Up
	Top Down
	Examples in Acronyms
	Useful Recursion
	Solving Problems with Recursion
	Approach for Problems
	Walking to the Door
	Implementing Factorial
	Code for Factorial
	Recursive style
	How Does Recursion Work Inside The Computer?
	All this math is great, but…
	Stacks
	Call stack
	Example with Factorial
	More Examples
	Recursion and loops have the same power
	Multiplication
	Code for multiplication
	Exponentiation
	Code for exponentiation
	Upcoming
	Next time…
	Reminders

